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A Stable Extrapolation Method for Multidimensional 
Degenerate Parabolic Problems* 

By Ricardo H. Nochetto 

Abstract. Degenerate parabolic problems in several space variables are approximated 
by combining a preliminary regularization procedure with a finite element extrapolation 
method. The proposed extrapolation acts on the so-called phase variable and leads 
to a linear problem which is shown to be stable. The ensuing linear algebraic system 
involves the same matrix for all time steps. Energy error estimates are also derived 
for the physical unknowns. An 0(h1/2) rate of convergence is proved, provided the 
approximation parameters are suitably related. In case the linear systems are solved by 
an iterative algorithm, such as the conjugate gradient method, an 0(h3/2) tolerance for 
the error reduction is shown to preserve the overall accuracy; the required computational 
effort is thus nearly optimal. 

1. Introduction. So far, extrapolation methods have been mainly used for 
time discretization of mildly nonlinear parabolic PDE's [3], [4], [5], [6], [9]. The 
key idea consists of replacing at each time step a (mildly) nonlinear function of 
the solution by an expression involving only previous values of it. This leads to 
a linear elliptic PDE which can be further discretized in space. Efficient linear 
solvers can be eventually used to solve the resulting linear algebraic problem. The 
success of this technique is obviously based on having a quite regular solution in 
time. Such a regularity is unrealistic for degenerate parabolic equations because 
they give rise to rough solutions. There is indeed a lack of smoothness across the 
free boundaries which, in turn, are not known in advance [7], [10]. A first attempt 
to overcome this situation might be to resort to a preliminary regularization [10]. 
However, the strong regularity required for a classical extrapolation method to work 
cannot be expressed in terms of the regularization parameter, making the algorithm 
mathematically intractable. 

The aim of this paper is to present a new extrapolation method for degenerate 
parabolic problems. A preliminary regularization is essential for the algorithm to 
work, but it requires minimal regularity properties to be stable. We shall be dealing 
with the following degenerate parabolic equation in the cylinder Q = Q x (0, T): 

(1.1) ' Ut - A\O = f(0), u E ey(O), 

where -y denotes a maximal monotone graph with a singularity at the origin, Q C Rd 
(d > 1) and T < oo is fixed; two-phase Stefan problems as well as porous medium 
equations are relevant examples. In addition, the graph -y is assumed to have the 

Received September 23, 1988. 
1980 Mathematics Subject Classification (1985 Rem'sion). Primary 65N15, 65N30, 35R35. 
Key words and phrases. Mushy region, regularization, extrapolation, finite elements. 
*This work was partially supported by NSF Grant DMS-8805218. 

?1989 American Mathematical Society 
0025-5718/89 $1.00 + $.25 per page 

455 



456 RICARDO H. NOCHETTO 

form 

(1.2) PI + H, 

where ,u > 0, H is also a maximal monotone graph and I is the identity. For 
the simplest Stefan problem, H can be chosen to be the Heaviside graph, thus 
representing the latent heat content. In this case, H can be regarded as a phase 
variable, whereas 0 is the temperature and u the enthalpy (or energy density). We 
shall keep these names along the paper, even though their physical interpretation 
might be different. 

The preliminary regularization procedure consists of replacing H by a smooth 
function H, whose maximal slope is bounded by 1/E; E > 0 is the regularization 
parameter. In order to introduce the extrapolation technique, it suffices to deal with 
a discrete-time algorithm; hereafter, r := T/N will indicate the time step. For en 

and y' being approximations to 0,(nr) and H, (0,(nr)) (1 < n < N), respectively, 
the standard (nonlinear) scheme corresponds to enforcing the nonlinear constitutive 
relation X, = H,(O,) also at the discrete level, namely, 

(1.3) x = He(,E3n), 1 < n < N. 

This leads to a sequence of nonlinear elliptic problems [8], [13], [14], [19]. The 
present extrapolation procedure is motivated by the physical fact that whenever a 
mushy region occupies the entire domain Q, which turns out to be the most critical 
regularity situation, the function H, (,e) coincides with 71 0v. We thus extrapolate 

Xjn as follows: 

(1.4) xi := He(E1) + (n n1) 1 < n < N. 
E 

This is a very crude extrapolation formula in that it utilizes time regularity for 0e 

rather than Xe; note that Xe has very low regularity properties (uniformly in E). In 
contrast to the standard scheme, the new elliptic problem is linear in the unknown 
On, namely, 

(1.5) ( + ) ae3 - z\en = e) [_0n1 He(el)] + f (E@ ) 

for 1 < n < N, where &r( := - -l?(n-7n-1 ). We further discretize this problem 
in space by means of continuous piecewise linear finite elements for the variable 
e)n and piecewise constants for Xn. This is done in such a way that the right-hand 
side of (1.5) can be readily and exactly evaluated without using any quadrature 
formula. The matrix corresponding to the resulting algebraic problem is symmet- 
ric, positive definite and independent of n. Therefore, its Cholesky factorization 
may be computed only once at the very beginning, if a direct method is to be 
employed. In case the linear systems are solved by the conjugate gradient method, 
an approximate solution needs only be computed. Specifically, we shall show that 
an 0(r) tolerance for the error reduction is good enough to stop iterations and 
still preserve the overall accuracy; the required computational effort is thus nearly 
optimal. This result resembles that in [6], but its analysis differs from the original 
one. A different linearization technique has been recently examined in [12], [16], 
[17], [18]; see also [11], [15] for an account of the state-of-the-art on this subject. 
An incomplete iteration may be applied to this latter algorithm as well. 
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The fully discrete scheme associated with (1.5) is shown to be stable in energy 
spaces provided the initial temperature 00 satisfies 00 E Ho (Q); this ensures that 
Ot E L2(Q). Since (1.4) can be written equivalently as 

(1.6) xy = HE (E1) + T9en 
E 

we realize that a bit of time regularity for 0 is expected to enhance stability. Energy 
error estimates are next derived for both physical unknowns 0 and u = 0 + X. 
An 0(h1/2) rate of convergence is proved under the mild constraints E = C1h, 
T = C2h3/2, where Ci and C2 are arbitrary positive constants; as usual, h stands 
for the mesh size. 

The paper is organized as follows. In Section 2 we state the precise assumptions 
and regularity properties, and we also introduce the fully discrete scheme. In Sec- 
tion 3 we deal with the discrete initial data. In Section 4 we demonstrate stability 
in the natural energy spaces, whereas we prove energy error estimates in Section 
5; in both sections we assume that the fully discrete problem is solved exactly. We 
finally investigate in Section 6 the effect of an incomplete iteration process. 

2. The Extrapolation Method. In this section we state hypotheses, set 
notation and formulate continuous and discrete problems. 

2.1. Assumptions and Notation. Assume the following hypotheses on the data: 

(HQ) Q C Rd (d > 1) is a polyhedral and convex domain; 
(HH) the graph H C R x R has a singularity solely at the origin, is Lipschitz 

continuous elsewhere and satisfies: 0 E H(O), 0 < H'(s) < H(s)/s, a.e. on 
R\{O} and IH(s)l < a + bisl for all s E R\{0} (a, b > 0); 

(Hf) f: R -* R is a uniformly Lipschitz continuous function,i.e., If(si)- 
f(s2)I < Flsi - 821, for all S1,82 E R; 

(Ho9) the initial temperature 00 satisfies 00 E ? 
(HUo ) denote by Q+, Q0 and Q- the subdomains of Q where Oo > 0, 00 = 0 and 

00 < 0, respectively, and assume that their (internal) boundaries F+ = aQ+ nQ and 
r- = a9- n Q possess finite (d - 1)-dimensional Hausdorff measure; in addition, 
the initial enthalpy uo satisfies uo E -y(0o) and uo E C0E1/2(+) f C0'1/2(Q) f 
C, 1/ 2(Q 

Note that either set in (Hu,) might be empty and that jump discontinuities 
across the initial interfaces r+ and F" are allowed. Note also that the property 
uo E C0 1/2(0+) (resp. C0 1/2(Q7-)) results from (Ho0) provided HE C0 1/2([0, oo)) 
(resp. C0 1/2 ((-oo, 0])), as happens for the Stefan problem. Let {Gh }h be a family 
of partitions of Q into triangular finite elements so that Q = UsEs,, S. We assume 
that: 

(He,) the family {Gh}h is regular and quasi-uniform [2, pp. 132, 140]. 

Quasi-uniformity is only used in defining the discrete initial temperature (see Sec- 
tion 3); it can be removed, thus allowing local refinements, provided Oo satisfies a 
nondegeneracy property as in [13], [17]. We shall be dealing with finite element 
spaces Vl and Vo which satisfy 

(2.1) V c Ho(Q), ViIs = P1(S); V s = P?(S), VS E6h 
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where Pi (S) indicates the space of polynomials of total degree not greater than i 
restricted to S. We shall also need a pair of projection operators associated with 
these two spaces. The first one, called Ph Xis a projection operator onto Vk defined 
by 

(2.2) (VP Z, Vb) = (Vz, Vk), VzEH0 (Q), qE$V1. 

Hereafter, (,.) will indicate either the L2-inner product or the pairing between 

Ho'(7) and H-1(Q). The second operator is the L2-projection onto VO, namely, 

(2.3) (PhZ,q$) = (zq), Vz E L 2((Q) E V 

In view of (HO), (Hch) and (2.1) the following approximation properties hold [2]: 

(2.4) PhZ - ZIIH-(Q) < Ch1 IIzIIH1(), V0 < s < 1, z EH ); 

(2.5) IIPhz - zIIH--(Q) < Chr+8IIZIIHT(Q), VO < sir < 1, z E Hr(Q). 

We conclude with some notation concerning the time discretization. Set t: 
nT,In := (tn-1,tn] and also zn := z(., tn) for all 1 < n < N and any continuous 
function in time defined in Q; recall that r = T/N stands for the time step and 
N is a positive integer. As usual, C > 0 will indicate a constant independent of 
relevant parameters involved, but not necessarily the same at each occurrence. 

2.2. Continuous Problems: Regularity. We now state the variational formulation 
of both (1.1) and its regularized counterpart along with their typical regularity 
properties. 

PROBLEM (P). Find {u, 0} such that 

(2.6) u E L?(0,T; L2(u)) nH1(0,T; H-1()), 0 E L2(0, T; Hol()), 

(2.7) u(x, t) E '-y(0(x, t)), for a.e. (x, t) E Q, 

(2.8) u(,0)=uo 

and for a.e. t E (0, T) and all X E Ho' (Q) the following equation holds, 

(2.9) d + (VO,V) = (f (O), ). 

Existence and uniqueness of (P) are well known as well as the following additional 
regularity result [7], [10]: 

(2.10) if 0O E HOl (), then 0 E H1 (0, T; L2(Q)) nL?? (0, T; Ho (Q)). 

Let E > 0 denote the regularization parameter and H,: R -+R be defined by 

min(H(s), E1s), s > 0, 

(2.11) H,(s) O, s = 0, 

1 max(H(s),E-1s), s < O. 

Moreover, let I, be the smallest interval so that H, (s) = H(s) for all s E R\I, 
and set tI6 p= I + HD, / := t /X ,: 1; note that 0 E I, and meas(I,) < 
2aE/(1 -bE), thus Io (s) -i3e(s)I < Ce for all s E R. The regularized problem reads 
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as follows: 
PROBLEM (Pe). Find { u, 0E} such that 

(2.12) ue E L?? (0O T; L2 (Q)) nH1 (O, T; H- 1 (Q)) 0 E L2e(OX T; Ho' (0)) 

(2.13) UE(X, t) = -y,e(0Oe(x, t)), for a.e. (x, t) E Q, 

(2.14) Ue(,0) = uo 

and for all t E (0, T) and X E HO (Q) we have 

(2.15) (t f+ (VO,V0) = (f(9e), 0). 

The regularity required in (2.12) is valid uniformly in ? but, in view of the choice 
of the initial enthalpy in (2.14), property (2.10) does no longer hold. Moreover, the 
bound 11ii%L IIL2(Q) < CE-1/2 used in previous works [8], [13], [14], [17], [19] fails to 
hold in the present situation. 

2.3. Fully Discrete Scheme. Let e0 E VI fulfil IIE)IIH3(Q) < C, where C is 
independent of both h and E. In addition, set E)-' := 80 and define ae(s) 
E1s - H (s) for all s E R. The fully discrete extrapolation method is defined as 
follows: 

PROBLEM (Pe,h,r). For any 1 < n < N find 8' E Vl such that 

(2.16) (,U + E-1)(aPhe(, k) + (Vh, V+ 

((9a,(pO En-1),qs) + (f (PO(n-10),q)1 VqE E Vh. 

The discrete phase variable and enthalpy are defined by 

(2.17) n H (p?X8n-1) + 6-lphO[En _n-1]1 Oan ph + Xn (2.17) x := He (Ph8 
h 1[~ ~~, U : ~~~+~ 

Since Phe)n-1 is constant on each finite element S (it is actually the value of 
8n-l at the barycenter of S), the right-hand side of (2.16) can be readily and 
exactly evaluated. Consequently, (2.16) is a practical scheme in that it can be 

easily implemented on a computer. Let M and K denote the matrices 

M =((Oi fI OM=l K := ((Voi, V7j)) j=l 

where ?/ is the ith element of the canonical basis of Vh and tj is the characteristic 
function of supp qj multiplied by (d + 1)1. Equation (2.16) can then be written 
equivalently in matrix form as follows: 

(2.18) AE n= [M + 1 + K On = Rn-1, 

where Rn-1 depends only on 8n-1. We see that this problem is linear and that 
the corresponding matrix is symmetric, positive definite and also independent of 
n. This yields unique solvability of (2.16). When the bandwidth of the system 
(2.18) is reasonably small, a Cholesky factorization is recommended for its effective 
resolution [1]. Such a factorization is to be performed only once at the beginning. 
Otherwise, when dealing with large bandwidths, such as those arising from adaptive 
algorithms, the (preconditioned) conjugate gradient method is preferred for solving 

(2.18) [1], [16], [18]. The condition number k(A) of A, and thus that of an eventual 
preconditioned matrix, is bounded uniformly in h because 

(2.19) Ahd < x Ax < A-l(1 + ETh2)hd, Vx E Rj, 
- 2jxj 
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and CT = o(h2) (see Section 5). Here, A > 0 indicates a constant independent of 
h, E and 7. Consequently, the error reduction produced by the conjugate gradient 
method is given by 

(2.20) Pk := 2 (k(A)1/2 + = 2Qk, 

where k E N stands for the number of iterations [1] and Q is bounded uniformly 
in h. It will be shown in Section 6 that an 0(r) tolerance for Pk can be used safely 
as a stopping criterion; hence, the lower bound 

(2.21) k > ko := logr/ log Q 

is almost uniformly bounded for computational purposes. As a result, the associ- 
ated incomplete iteration process discussed in Section 6 involves a nearly optimal 
-computational labor. 

3. Discrete Initial Data. Our present task is that of selecting the initial 
temperature 80 E Vk. We wish the following two properties to hold: 

(3.1) 118OIIH1(Q) ? C, IIU - UoIIH-1(Q) < Chl"2, 

where UO, the initial enthalpy, is defined by UO := pPhOE0 + He(PhOE0). The 
obvious choices 80 - Ph1Oo and 80 = IhOo (Ih interpolation operator) fail to work 
in this context because the corresponding U? does not satisfy the error bound in 
(3.1), unless an initial nondegeneracy property is verified [13], [17]. This condition 
prevents Problem (P) from having an initial mushy region. Since their presence is 
the major motivation for our extrapolation method, we would like to allow mushy 
regions from the very beginning, as stated in (Hu,). Moreover, (Huo) together 
with (Ho9) implies that uo, and thus #%(uo), is continuous everywhere but on the 
initial interfaces F+ and r-, where jump discontinuities might occur. We then 
define 80 E Vl at each node xi to be 

(3.2) 8? = (limsupuo(x)); 
-i 

note that 8? = le (uo(xi)) for all xi v r+ U F-. Hence, 80 is easy to evaluate in 
practice. 

LEMMA 3. 1. The initial data 80 and UO satisfy (3.1) provided E and h are 
subject to the mild constraint C2 < C*h, where C* > 0 is an arbitrary constant. 

Proof. Let S e &h be given and let xi and xj denote two of its vertices veri- 
fying 80(xi) > 19?(xj). In order to demonstrate the a priori estimate in (3.1), we 
distinguish three cases depending upon where S is located. Let Q? be defined by 

{ := {x E : uo(x) E wie(Ie)}. 

Assume first that S C ?2o\(r+ U r-). Since /,(s) = Cs/(1 + C/I) for all s eE4Ie), 
we can write 

60(xi) - o0(xj) = i3(u0(xi)) - 03(uo(xj)) = 1 C [u()Uo(-j)] + C/I 

whence IlV70 lILa(S) < Ceh-1/2. Here we have used (Heh) as well as (H,,). Sup- 
pose now that S n (r+ u r-) 7 0, and denote by F the union of all finite elements 
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having this property. Since both r+ and r- possess finite (d- 1)-dimensional Haus- 
dorff measure, we infer that meas(F) < Ch, where meas stands for the Lebesgue 
measure. Hence, in view of the property 3(lim sup,.,,0 uo(x)) = Oo(xo) for all 
xo E Q, we arrive at 

80 (xi) - e0 (xi) = l (lim sup uO (x)) - de (lim sup uo (x)) 
x -Xi x -Xj 

= ig (lim sup UO (X))- (lim sup uo (x)) 
x Xi x -Xi 

+ o (xi) - Oo (xj) 

+ 1 (limsupuo (x) - (limsupUO(X)) 
x -Xj X -Xj 

< C(E + h), 

which, coupled with an inverse inequality, results in 

jIVe? |IL2 (F) ? Ch- 1 (? + h) meas(F) 112 < C(Eh- 1/2 + h1/2) 

We next consider the case S C Q+ and xi E Q+\Q0; one can argue with Q- in a 
quite similar fashion. It follows that 

8 (xi) = /e(uo(xi)) = 9o(xi), 

e0 (x3) = /e(uo(Xj)) > /(uo(xj)) = Oo(xj), 

whence, by (Hoo), 

0 (xi)8- 
0 

(xj) < o(xi) - Oo(xj) < Ch. 

This yields IIVe0 IILc-(S) < C and completes the proof of the first estimate in (3.1). 
The remaining one will be derived in L2 () rather than H-1(s). Let S satisfy 
s n (r+ u r-) = 0. Since uo is Holder continuous on S, there exists y E S such 

that Phe 0 (x) - e (uo (y)) for all x E S. Then 

U? (x) - uo (x) = sYE( E (uo (y) - uo (x) = uo (y) - uo (x), Vx E S, 

which, in turn, leads to jjU01UoIILoO(s) < Ch!2. Finally, the fact that meas(F) < 
Ch implies IJU0 - u011L2(F) < Ch1/2 and concludes the proof of the lemma. 5 

4. Stability. The aim of this section is to show that the fully discrete scheme 
(2.16) satisfies a discrete version of (2.10). 

LEMMA 4.1. There exists a constant C > 0 independent of h, ? and r such 
that 

N 

(4.1) h TIIaPDeoIIL2(Q) + 1<Ma<N X V IIL2(Q) 2 0(1 + jIVe IIL2(Q)) 
n=1 
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Proof. Take q r:a08 E Vl as a test function in (2.16), add on n from 1 to 
m < N and use definition (2.3) of PhI to rewrite the resulting expression as follows: 

m m 

(IL + ) h 
r(DP, e3, aPh e) + 

n 
(ven, [e_ - 

n=1 n=1 

=:I + I 
(4.2) 

(= rn (#oO!(pOon-l) apO3n) + E T(f(pO4E-1), apOfen) 

n=1 n=1 

III + IV. 

We now proceed to estimate the last three terms separately. Making use of the 
elementary identity 

(4.3) 2a [a-b] = la12-Ibl2 + la-b12 for a, b E Rd, 

we easily get 

II = E (j||jvenj||21 -I II V8n-1 IIL22(o) + 11V [8) -_ E 11121(2 2n) 
n=1 

2 L2 ( ) 2 L2 ( ) 

In evaluating the contribution of III we observe that the function a, satisfies 0 < 
' (s) < E-1 a.e. s E R. Hence, 

m m 

111?rlap()- llap ?n -1 Erllap0e)nIl2() III < 6-1 110@he lL2 (Q) l@hlL2 (Q) < - h L2 (pQn)l 
n=1 n=1 

because E'-1 = e; this term can be readily absorbed into the left-hand side of 
(4.2). Assumption (Hf), together with 

n-1 

(4.4) pOEn- = P1?0 + E rOPh?t, 2 < n < N, 
i=l 

results in 
m 

IV <C l TIIOP,?8@IIL2(o)(1 +lPhO 81IL2(Q)) 
n=1 

m n \2 

YllapO)nfl E)ill2 () +0( + <S [E rLIIdP?(e1hf 2 (Q) + C (E T11kPhi 11 L2L(n) L2 (n))] 

m m n 

5 2 || ph | + C 
1 2 

2(Q) + C(1 + IIV8OII 2(o)). 
n=1 n=1 i=1 

Collecting the above estimates and inserting them in (4.2), we easily obtain 
m 

, rllp5 En l + flVE8mfl12( IL E T 1Ah o 1L2 (Q) +2 11(7m11 
n=1 

m n 

<0C ( 1+ 11 V8 ||L2 (Q)) + C 2 Ia T Ph ll2 (f) 
n=1 i=1 
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The discrete Gronwall lemma finally yields the assertion. o 
Remark 4.1. Note that term III above can also be bounded by 

rn-i 

III < ?1E rIIaP | L2 (0) + r (2e)- IIap LemII12(Q) 
n=1 

Consequently, arguing as before, we find the additional estimate 

(4.5) 1<na<xN h [ L2 (eQ] ) < C(Er) 1/2(1 + I IVE)IIL2 () l l 

The next a priori estimate resembles that in (2.6) for the continuous enthalpy u 
because r and ? will be related in such a way that r = o(E). 

LEMMA 4.2. There exists a constant C > 0 independent of h, ? and r such 
that 

(4.6) max IUn iiL2(Q) < C(1 + r1/2 l1/2)(1 + IIV8eIIL2(Q)). 

Proof. According to (2.17) we have 

(.)U = + He(Ph oni1) + ?-lPh [En _ n-1] 

Making use of (4.4) coupled with (4.1), we easily conclude that 

MaX IIp,rE)nIi2 C 
<n<N N 

h IIL2(Q) < C 

This and the fact that H grows at most linearly at infinity, as stated in (HH), 

yields maxl<n<N IIHE(P ihen)IIL2(Q) < C. Finally, in dealing with the rightmost 
term in (4.7) we resort to (4.5). These estimates clearly give the desired result. O 

5. Error Analysis. In this section we shall demonstrate various energy error 
estimates for the physical variables 0 and u. Before we get started, let us introduce 
some further notation: 

e :=O- 0, e" :=u-ue; eo :=uo-U?; 

eh'(t) := OE(t) - en, eh(t) := U(t) - Un, Vt E In 1 < n < N. 

We first recall a well-known result regarding the effect of the regularization proce- 
dure [8], [13], [14], [17], [19]. 

THEOREM 5.1. There exists a constant C > 0 independent of ? such that 

(5.1) lIe60'IL2(Q) + jeo + lIleU lILo(O,T;H-1(02)) < CE<. 
O L??(O,T ;Ho(Q)) 

The next two results are independent of the particular choice of e0 made in 
Section 3; hence, they are valid for regular meshes that may have local refine- 
ments. Our main concern now is to prove an error estimate for the fully discrete 
temperature. 

THEOREM 5.2. There exists a constant C > 0 independent of h,6 and r such 
that 

(5.2) Il eIhL2( + j eh < C(hE 1/2+TC +T +|IeUIIH-1(-)) 
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Proof. Integrate Eq. (2.15) on P for 1 < i < N to arrive at 

(aui, q) + r4 (V ? = r0 i f() q), v eHo(Q). 

On the other hand, Eq. (2.16) can also be written as follows: 

(PYe (PhEi), q0) + (VEi, iVq) 

(a[a[e(Ph E81) - ae(Ph 8i)] q) 

+f (4(pO9i -1) 1 ) 8 h, <i<N 

Subtracting these two expressions, adding over i from 1 to n < N and recalling 
(2.13) as well as - = &? and U? :=- Phjo0 + He(P h?), we easily derive the 
following error equation for 1 < n < N: 

(^,,(on) (PO e4n), k) + hV e (t) dt, V,$) 

= (eo ,q) 
(5.3) 

(a.+ ((Pen) 0(-n-1)5 

+ KE1 f [f(Oe(t)) - f(Ph8D 1)] dt, q$) Vq$ EVh. 

To proceed further, we make use of a technique introduced in [13]. Namely, take 

fI,, Ph'eah(t) dt e V as a test function in (5.3) and next add these equations 
from n = 1 to n = m < N. The resulting expression reads as follows: 

m 

S f (e(O) -(0,) (PO ?n), Plh e(t)) dt 
n= 1 

n 

+ EV f eo (s)ds, V Pheo (t) dt) 

n=1 I=1 
.+ 11 

(5.4) = (eo ZfPi eh(t)dt) 

+ r i a, (PhEn ), P eh (t) dt) 

+ II V ,[f ( m(s))-Nf (Phoe. 1) ds I eh(t) dt) 

=:III +IV +VI Vl < m < N. 
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The rest of this proof consists of simply estimating these five terms. To begin with, 
we rewrite term I in a more convenient form, namely, 

m 
I = E f (yE (OE (t)) - a~(Ph In) O e(t) - Ph E) dt 

n= I 

+ |(E-ue(t), P,hea(t)) dt 
n=1 J] 

m 

+ E f ('7ye(UE(t)) -E(Ph t), [Pd - I]t() dt 
n=1 wr 
m 

+ E (t)) h h - I] t) dt n=1l 

> ~IIe6 IIL2(O,t;L(t)) +_ IIpj()n) IIp2O,mL()-Oh 

=:Il + I2 + I3 + I4- 

By virtue of the definition of as well as (2.5), (4.1) and the property 
l/(1 t t,w) >rs/2, we can write 

m 

(2.4) and (2.12 (rsp 2.) n (4.)pE), weoti 

I 1 (p 1) / (6jIr3L2(n+) dt 

m 

+ o hOe hIL2(o,H())) (resp. )|1L2(Q) dt 

I2 L2I(0,tL 4;L ( -l(0) -+IIL2(t;L2(Q))- 

where extter() m= in(5.) p hrove . The contribution due to p2 is easily bounded 

in view of (2.4), (2.12) and (4.1). In fact, we have 

I2 < 
n |t a (98s)ds| |0,E(t)| H1 1(5) + | I||H (S)) dt < Cr. 

2En= (EaH)=(Za )+Z ~ aEd 1m N 

The last two terms are similar and, thus" can be analyzed in the same manner. By 

(2.4) and (2.12) (resp. (2.5) and (4.u1)), we obtain 

- 2 2~~~~~~~~~h 

I3 (resp. 14) < 8 (0) L 3 (0 t L2(Q)) + C-d 

where C > O depends on 1106 IIL2 (0,T;Ho (Q)) (resp. EN= ,rllE3n |21(Q) The above 

estimates lead to the following bound for I: 

i-" 2~~h2 

I> 2|eo 1IL2(O,tm;L2(Q)) -LC (-+ 

The next term in (5.4) provides the Hl-estimate. In order to prove it, we first need 

the following by-product of (4.3): 

m n \ m 2 m 

2Ean- tEai) = t _an)~~~ +a, Va 1 < m1< < N. 
n=1 = n=1 n=l 

Next, take an fj JnIPh e h (t) dt and use this identity to deduce 

II > 2V Ph' e Phe(t) dt| = | V Ph'eh(t) dt| 
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For term III we use the duality between Ho' (Q) and H-1 (Q) to arrive at 

tm 

IV < C-S |@Ph?(3n ||2 (Q) | (|e 
P(t) eI h (t) dt1[h I0 ()IL Q 

III < jjejjlH-1(07) f P 0~td 

n=l I'l~~~~~~~~~~~~L(~2 

2 m 

V< {E JU |e(I2)+TP[- ]LL2 (L2) 

Term IV is essentially due to the extrapolation algorithm and requires some time 

regularity for temperature to be treated. Indeed, we exploit property 0 < a' < e71 

together with (4.|1) and (2.12) to conclude 

m~~~~ 
IV < 2_ |Ea 11L(9POtm;L2 (Q)) +(ClEh(tleIIL2(Q) r;L() + C(h +Ph 

Iv ? ~ ~ j (je~'()jj~~ + jjP, -I]O,E(t)IIL2(Q)) dt 
n=1 

IIeO IIL2 (O,tm;L2 (Q)) + C h L2()+ h Ph II0(tdL2(O,tm;H1(72)) 
8 n=~~~~~~~~~~~~1 

< C Ile -+1 2 + 
r) +C ||e? 12 - n)+CErlaIL(nL( 

?ost ter IIL2(0,tm;L(7) + C + hg) 

It only remains to examine the source term V. We make use again of (2.4) and (4.1) 
to bound V as follows: 

Vsn (HQ Ilele wit (2.1). oevr ic 0#(sEH O ;H1() 

C0 1/2(0XT; Qe6 kL2es readhil - etim -]IIL2(52) 
n=1 i-1 'i 

xe fow co t(Ileh(t)IIL2(ys )+ II[Phw - Iroe(t)IIL2mt f )) dt} 

m 

2 5 IIeIIL2(o,tm;L2(Q72)) + C( + TIL2(otn;L + C(h2 + || ) 
n=1 

Inserting all the previous estimates in (5.4) results in the following inequality 

tm ~~~2 
,ujlleO IL2(0,tm;L2(Q)) + / Ph~~t dt 

6 +2 + u- HJeJ'~(Q7)) +C I~I2 (o,tn;L2 (Q)).- 
n=1 

Finally, application of the discrete Gronwall lemma enables us to control the right- 
most term. We further exploit the fact that ft Oe(s) ds E L00(O, T; H 2(F2)) to get 
rid of Ph1 on the left-hand side; this comes from integrating (2.15) on (0, t) and 

using (HO) coupled with (2.12). Moreover, since ft OE (s)dS E H' (0, T; Ho' (s)) c 
CO,1/2 (0, T; Ho'(0)), we readily obtain the desired estimate (5.2). n1 

We now complete the error analysis with an error estimate for enthalpy. 

THEOREm 5.3. There exists a constant C > 0 independent of h, e and r such 
that 

(5.5) IlehIIiL-(O,T;H-1(0n) ? C(hE-1/ +rE'l + T1/2 + iieo IIH-1 (0)). 
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Proof. This result is a simple consequence of (5.2). To see why, write (5.3) as 
follows: 

(Un -Un 0) + KV f eh(t) dt, Vq) 

= (es,'P) + ( j [f(Oe(t)) - f(P h0-1)] dt, I), VE EV 

where we have used definition (2.17) of un. Let q$ e Ho (Q) be given, and denote by 
'Ph e Vk a suitable interpolant of ' satisfying Ik0-OhIIH8(r) ? ChlSII'PIIH1(n), s = 
0, 1 [2]. Then, 

(Un - Un, X) = (Un - Un, ' _-'h) V eh (t) dt, V?h 

/n\ 

+ (eq, 'h) + K [f (06(t)) - f (Pho e ')] dt, 'Ph) 

< C(hT 1/2g-1/2 + hE-1/2 + T-1 + r1/2 + leu IH-1(Q))lklI>H1(r) 

as results from (2.12), (4.6) and (5.2). This shows (5.5), because 

eh(t) = Un _Un + U(t) _Ugn Vt E InX 

and H1(0 T;H-1(0)) C C0 I2 (0,T;H' (7)), so we can apply (2.12). O 
We conclude this section by establishing the global rate of convergence of the 

proposed extrapolation method. 

COROLLARY 5.1. Let h, ? and T satisfy e = C1h and T = C2h3/2, where Cl, C2 
indicate arbitrary positive constants. If e0 is chosen as in Section 3, then 

(5.6) leoJ llL2 (Q) + feo || + |leuffLo(o0,T;H-1()) 0= (hl/2). 
O L?? O,T;Ho (Q)) 

Remark 5.1. In view of (1.6) and (2.17) we realize that r must tend to 0 faster 
than e, therefore than h, for the discrete phase variable Xn to converge to the 
correct limit. This, in conjunction with the fact that Problem (P) is not purely 
parabolic, partially justifies the relation T = C2h3/2. O 

6. Incomplete Iteration Process. The object of this section is to show that 
whenever an iterative procedure is to be employed, Problem (Pe,h,r) does not need 
to be solved exactly but rather approximately in the sense that only a prescribed 
error reduction must be imposed. This reduces considerably the computational 
labor and still preserves the overall accuracy discussed in Section 5. Our result 
is in the spirit of a former one in [6] for the standard extrapolation method, but 
the present proof is quite different from that in [6] because of the intrinsic lack of 
regularity associated with degenerate parabolic equations. 

Suppose that the linear equation (2.16) is solved with an iterative algorithm, 
such as the conjugate gradient method, and-that the initial guess is en-1. Then 
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the incomplete iteration reads as follows: 
Problem (Pe,h,r) For 1 < n < N let -n E Vl denote the exact solution to 

(6.1) (,u + h1)r1(POEn 
- 

P 3 b) + ( Vt) 

= (8a(P en1),X 0) + (f(PEn-1), 0), Vq E Vk. 

Then, define En E V) to be any iteration satisfying 

(6.2) { + E-1)r-1 |lPh?[En - on]|2 (Q-) + V[L2 (Q) 
< -1 n _ n-1 I < 2rIjj - ellJA. 

Inequality (6.2) is the typical error reduction produced by the conjugate gradient 
method and can be transformed as follows: 

(6.3) 1- _ llA < 4rlle)n ||A. 

This results from taking r < 1/4. The error reduction (6.2) is the basic ingredient 

for stability and accuracy to be maintained, as we shall prove below. Whenever the 

conjugate gradient method is utilized, (6.2) provides the lower bound (2.21) for the 

number of required iterations. 

Equation (6.1) can also be expressed in the following equivalent form: 

(6.4) 
(P + 

P1)(hPhe3, q) + (Ve9, Vq$) 
(aCa (p?En- 1) q0) + (f (phOEn-1 )) ?) + (Rn, X)X Vq E 

where Rn E H-'(0) is defined by 

(6.5) 
(R 

d,q) 
:= 

+e)(P [et -G ] 

+7 v[E)n-n,v, E Hol() 

The only novelty in analyzing stability and accuracy is the presence of the remainder 

Rn; so most details will be skipped. The first result extends Lemma 4.1 to this 

more general situation. 

LEMMA 6.1. Assume r = o(e). Then there exists a constant C > 0 independent 

of h, ? and r such that 

N N 

h 1< O8n1 L2 () + E ||1V [E) _ eE) ] ||L2 (Q) 
(6.6) n= 1 n= 1 

+ max 1V1 EnL2(2Q) < C(1 + jIVe0 IIL2(Q)). 

Proof. Take X := r(E3n E Vl as a test function in (6.4), add on n from 1 to 

m < N and recall definition (2.3) of Ph? as well as the notation in (4.2) to write the 

resulting expression as I + II = III + IV + V, where 

m m 
V = ( +e-1) E(pO[e)n -n] , ]an) + E(v[e)n -n] ] V[e) -nE ]). 

n=1 n=1 

The analysis of the first four terms is similar to that in Lemma 4.1. In particular, 

we now need the full expression of II, namely, 

2= 2Ive IIL2(Q2) - 2IIve IIL2(7) + 2 17iv[1E - IIL 
n=1 
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We next evaluate the contribution due to V. By virtue of (6.3), we have 
m 1 m 

V < 
' 

E |II(9PhE)'II'2(Q) + -E 11v[E -n E In1 (11 
n=1 n=1 

m m 

+ + )2-1 
- 

E 1IIP[8n -n ]12 + 
- 

jjV[(3 - H n] 112 
< + c ) laell( + + + ci) + L2v[eQ n=1 n=1 

< (4 + C 2 )E 10@h3IlL2(Q) + -4+ - E 11|7[E _ 1 ]lL2(Q)- 

Collecting the above estimates and exploiting the fact that r = o(e), we easily 
derive the assertion after applying the discrete Gronwall lemma. O 

We are now in a position to prove energy error estimates which generalize those 
in Corollary 5.1. 

THEOREM 6.1. Let h, E,,r and e0 be chosen as in Corollary 5.1. Then 

(6.7) IIeoIlL2(Q) + jeo L(H ) + IIeuIIL(o,T;H-I(Q)) = 0(h1/2). 
0L??(0 T;Hl(Q)) 

Proof. We proceed along the same lines as those in Theorems 5.2 and 5.3. In 
particular, instead of (5.4) we now have the equality I + II = III + IV + V + VI, 
where VI stands for 

VIl= E(r dR' ) eh (t)dt 

m /n\ 

(P + 
?- 

1) E phO [E3 _) ] Ph 0O t 

m /n\ 

+ E r EV [E)i ' ,V |-Ph' eoh(t) dt). 

Terms I to V can be bounded in the same manner as in Theorem 5.2, with II 
verifying 

II= f VPhle h(t) dt2 + v P || (t) dt2 2 0 ~~~~~L2 (17 J=1 L2 (17) 

Next, we make use of (2.4), in conjunction with (2.12) and (6.6), to split term VI 
as follows: 

m 2 

VI ? 61eIICI12(om;2(Q)) + 6 V J ,leh(t) dt + 08h2 

+ 081(M + ?-1t)L2 E Zh P[ - 

n=1 i=l 
m 

Cn11 

+ 
C&-1_ 

Z Z i_v[e1 - H2IL2(p72)i 
n=l i=l 

2 m n 2 wher 6 >0 isToeslce.Tels two terms canlif befrte boude b 
C61 T2 Z LE (rIIdP,Oe|I2(0) + II V[ei - e'II2 ()) ? 62 

n=1 i=l 
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as results from (6.3) and (6.6). A proper choice of 6 allows the corresponding terms 
to be absorbed into the left-hand side of (5.4), thus yielding the first two estimates 
in (6.7). The remaining one can be obtained by coupling the argument in Theorem 
5.3 with that above to handle i TRi. 0 
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